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TECHNICAL SUMMARY

Our research concentrated on the following topics:

Logic Programming Semantics: Techniques and Applications ([B1]-[B3])

It is generally agreed that providing a precise formal semantics for a programming language is
helpful in fully understanding the language. This is especially true in the case of logic-programming-
like languages for which the underlying logic provides a well-defined but insufficient semantic basis.
Indeed, in addition to the usual model-theoretic semantics of the logic, proof-theoretic deduction
plays a crucial role in understanding logic programs. Moreover, for specific implementations of
logic programming, e.g. PROLOG, the notion of deduction stategy is also important.

We provided semantics for two types of logic programming languages and develop applications
of these semantics. First, we propose a semantics of PROLOG programs that we use as the basis of
a proof method for termination properties of PROLOG programs. Second, we turn to the temporal
logic programming language TEMPLOG of Abadi and Manna, develop its declarative semantics,
and then use this semantics to prove a completeness result for a fragment of temporal logic and to
study TEMPLOG's expressiveness.

In our PROLOG semantics, a program is viewed as a function mapping a goal to a finite or
infinite sequence of answer substitutions. The meaning of a program is then given by the least
solution of a system of functional equations associated with the program. These equations are
taken as axioms in a first-order theory in which various program properties, especially termination
or non-termination properties, can be proved. The method extends to PROLOG programs with
extra-logical features such as cut.

For TEMPLOG, we provide two equivalent formulations of the declarative semantics: in terms
of a minimal temporal Herbrand model and in terms of a least fixpoint. Using the least fixpoint
semantics, we are able to prove that TEMPLOG is a fragment of temporal logic that admits a
complete proof system. This semantics also enables us to study TEMPLOG's expressiveness. For
this, we focus on the propositional fragment of TEMPLOG and prove that the expressiveness of
propositional TEMPLOG queries essentially corresponds to that of finite automata.

* The TABLOG language and its implementation ([MMW])

Logic programming uses formal proofs as the computation paradigm. That is, a logic program
is a theory, expressed in a given logic, that captures some properties of the real world. The
execution of such a program is the proof of some theorem in this theory.

TABLOG is a new logic-programming language ([M][MMW1][MMW2]) based on quantifier-
free first-order logic with equality, using the proof rules of the deductive-tableau theorem-proving
method as the execution mechanism.

The main features of TABLOG are consequences of the use of full first-order logic. In particular.
TABLOG incorporates all the standard connectives, not only implication and conjunction, but also
equality, negation and equivalence. Programs are nonclausal: they do not need to be in Horn-clause
form or any other normal form. Programs can compute relations (as in PROLOG) or functions (as
in LISP), whichever is more appropriate; this improves the clarity and the efficiency of programs.
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Terms are lazy-evaluated to make the use of functions more convenient. No cut annotation is
required as the system can detect such optimizations dynamically.

Three deduction rules are used for the execution of the programs: nonclausal resolution (case
analysis), equality replacement (repalcement of equal terms), and equivalence replacement (repal-
cement of equivalent subsentences).

We have developed of a compiler for TABLOG; this compiler will produce code for a virtual
TABLOG machine, similar to the Warren abstract machine. This compiler, written in TABLOG itself,
will support a new syntax, which includes types and an elaborate notion of modules and generic
modules. The virtual machine was implemented on a Sun workstation.

* Logic: The Calculus of Computer Science ([MW])

The research papers in which we have presented the deductive approach to program synthesis
has been addressed to the usual academic readers of the scholarly journals. In an effort to make this
work accessible to a wider audience, including computer science undergraduates and programmers,
we have developed a more elementary treatment in the form of a two-volume book, The Logical
Basis for Computer Programming, Addison-Wesley (Manna and Waldinger [85c]).

This book requires no computer programming and no mathematics other than an intuitive
understanding of sets, relations, functions, and numbers; the level of exposition is elementary.
Nevertheless, the text presents some novel research results, including

" theories of strings, trees, lists, finite sets and bags, which are particularly well suited to

theorem-proving and program-synthesis applications;

" formalizations of parsing, infinite sequences, expressions, substitutions, and unification;

" a nonclausal version of skolemization;

" a treatment of mathematical induction in the deductive-tableau framework.

* Verification of Concurrent Programs ([MP])

We studied in detail the proof methodologies for verifying temporal properties of concurrent
programs. Corresponding to the main classification of temporal properties into the classes of safety
and liveness properties, appropriate proof principles were presented for each of the classes.

We developed proof principles for the establishment of safety properties. We showed that
essentially there is only one such principle for safety proofs, the invariance principle, which is a
generalization of the method of intermediate assertions. We also indicated special cases under
which these assertions can be found algorithmically.

The proof principle that we developed for liveness properties is based on the notion of well-
founded descent of ranking functions. However, because of the nondeterminancy inherent in concur-
rent computations, the well-founded principle must be modified in a way that is strongly dependent
on the notion of fairness that is assumed in the computation. Consequently, three versions of the
well-founded principle were presented, each corresponding to a different definition of fairness.
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